MyZanichelli - la tua chiave digitale. Registrati per accedere alle risorse online di Zanichelli Editore
 
Entra
Stai consultando l'archivio di Scienze. Visita la nuova Aula di Scienze!
Zanichelli Editore
Aula di Scienze
  • Home Page
  • Menù
  • Novità
Zanichelli - Aula di scienze
  • Home
  • Per saperne di più
  • News
  • I Blog di Aula di Scienze
  • Idee per insegnare
  • L'esperto risponde
    • L'esperto di matematica
    • L'esperto di fisica
    • L'esperto di chimica
  • La Redazione

Archivio per data

  • Giugno 2013
  • Maggio 2013
  • Aprile 2013
  • Marzo 2013
  • Febbraio 2013
  • Gennaio 2013
  • Dicembre 2012
  • Novembre 2012
  • Ottobre 2012
  • Settembre 2012
  • Giugno 2012
  • Maggio 2012
  • Aprile 2012
  • Marzo 2012
  • Febbraio 2012
  • Gennaio 2012
  • Dicembre 2011
  • Novembre 2011
  • Ottobre 2011
  • Settembre 2011
  • Giugno 2011
  • Maggio 2011
  • Aprile 2011
  • Marzo 2011
  • Febbraio 2011
  • Gennaio 2011
  • Dicembre 2010
  • Novembre 2010
  • Ottobre 2010
  • Settembre 2010
  • Luglio 2010
  • Giugno 2010
  • Maggio 2010
  • Aprile 2010
  • Marzo 2010
  • Febbraio 2010
  • Gennaio 2010
  • Dicembre 2009
  • Novembre 2009
  • Ottobre 2009
  • Luglio 2009
  • Giugno 2009
  • Maggio 2009
  • Aprile 2009
  • Marzo 2009
  • Febbraio 2009

I tag più utilizzati dall'esperto

  • analisi infinitesimale
  • derivate
  • limiti
  • goniometria
  • studio di funzione
  • geometria solida
  • trigonometria
  • circonferenza
  • equazioni parametriche
  • parabola

Aggiornamenti

  • RSS L'esperto risponde
IdeeLIM - Idee per insegnare con la Lavagna Interattiva Multimediale
Spazio CLIL - Content and Language Integrated Learning
Home Scuola Aula Scienze L’esperto risponde - Matematica

Uno studio di funzione

Uno studio di funzione

Disciplina: Matematica Analisi 
di Massimo Bergamini, 8 Luglio 2010

Ricevo da Maria la seguente domanda:

Gentile prof.re, nell’esame di matematica I dovevo studiare la funzione
                                                         \[f\left( x \right)=\frac{2x+1}{{{x}^{2}}-1}\]
Penso di aver fatto l’esercizio in modo esatto, ma non riesco a sviluppare il grafico. Potrebbe aiutarmi?
 
Le rispondo così:
 
Cara Maria,
la funzione, definita per \(x\neq \pm1\), nulla in \(x=-1/2\), positiva per \(-1<x<-1/2\) e per \(x>1\), negativa altrove, presenta asintoti verticali in corrispondenza di \(x=-1\) e \(x=1\), e ha come asintoto orizzontale l’asse \(x\). La derivata
\[f’\left( x \right)=-\frac{2\left( {{x}^{2}}+x+1 \right)}{{{\left( {{x}^{2}}-1 \right)}^{2}}}\]
Non si annulla mai ed è sempre negativa, e questo mostra come la funzione sia sempre decrescente in ogni intervallo di cui è costituito il suo dominio, e il fatto che non presenti massimi o minimi relativi.
Massimo Bergamini
Tag: analisi infinitesimale, studio di funzione


© 2008 - 2022 Zanichelli Editore SpA - P. I. 03978000374 - C. F. e N. I. Registro delle Imprese 08536570156 - R.E.A. n.329604
Progetto e sviluppo web duDAT Srl