Massimo BergaminiL'ESPERTO DI MATEMATICA
Un integrale definito
Ricevo da Maria Antonietta la seguente domanda:
Calcolare la misura dell’area della parte di piano \(A\) così definita:
\[A=\left\{ \left( x,y \right)|{{x}^{2}}-4x+3<0\wedge 0
Un solido di rotazione
Ricevo da Elisa il seguente quesito:
Tra le parabole che hanno asse verticale e vertice \(V(0,1)\) determinare quella che ha tangenti nei punti \(A\) e \(B\) di ascissa \(1\) e \(-1\) tra loro perpendicolari. Tra le parabole determinate indicare con \(p\) quella concava verso l’alto, scrivere le equazioni delle tangenti a \(p\) in \(A\) e \(B\), determinare il loro punto di intersezione \(C\) e calcolare il volume del solido generato da una rotazione di \(180^\circ\) attorno all’asse di \(p\) del triangolo mistilineo \(ABC\). Leggi tutto »
Un problema di geometria analitica
Ricevo da Jackelin il seguente problema:
In un riferimento cartesiano \(xOy\) si considerino i punti \(A(1;1)\) e \(B(-1;1)\). Indicate con \(r\) ed \(s\) rispettivamente le rette \(OA\) e \(OB\), scrivere l’equazione della circonferenza passante per \(A\) e per \(B\) e ivi tangente alle rette \(r\) ed \(s\). Scrivere poi l’equazione della parabola con asse parallelo all’asse \(y\) passante per \(A\) e per \(B\) e ivi tangente alle rette \(r\) ed \(s\). Considerato sull’arco di parabola situato nel 1° quadrante un punto \(P\) di ascissa \(k\),detti \(M\) la sua proiezione sull’asse \(x\) ed \(N\) il punto d’intersezione della parallela per \(P\) all’asse \(x\) con la tangente in \(B\) alla parabola, si determini la posizione del punto \(P\) affinchè la somma delle distanze \(PM\) e \(PN\) sia uguale a \(2+\sqrt{3}\). Leggi tutto »
Una piramide
Ricevo da Elisa il seguente quesito:
Una piramide ha per base un rettangoolo \(ABCD\) la cui diagonale \(AC\) è \(25\) e la distanza del vertice \(B\) da essa è \(12\). I lati maggiori sono \(AB\) e \(CD\). Sapendo che la proiezione ortogonale del vertice \(V\) della piramide sul piano di base è nel punto di intersezione delle diagonali di \(ABCD\) e che gli angoli \(AVB\) e \(DVC\) sono retti, trovare area laterale e volume della piramide e l’area della sezione ottenuta con un piano parallelo alla base e distante da essa i \(2/3\) dell’altezza della piramide. Leggi tutto »