MyZanichelli - la tua chiave digitale. Registrati per accedere alle risorse online di Zanichelli Editore
 
Entra
Stai consultando l'archivio di Scienze. Visita la nuova Aula di Scienze!
Zanichelli Editore
Aula di Scienze
  • Home Page
  • Menù
  • Novità
Zanichelli - Aula di scienze
  • Home
  • Per saperne di più
  • News
  • I Blog di Aula di Scienze
  • Idee per insegnare
  • L'esperto risponde
    • L'esperto di matematica
    • L'esperto di fisica
    • L'esperto di chimica
  • La Redazione

Archivio per data

  • Giugno 2013
  • Maggio 2013
  • Aprile 2013
  • Marzo 2013
  • Febbraio 2013
  • Gennaio 2013
  • Dicembre 2012
  • Novembre 2012
  • Ottobre 2012
  • Settembre 2012
  • Giugno 2012
  • Maggio 2012
  • Aprile 2012
  • Marzo 2012
  • Febbraio 2012
  • Gennaio 2012
  • Dicembre 2011
  • Novembre 2011
  • Ottobre 2011
  • Settembre 2011
  • Giugno 2011
  • Maggio 2011
  • Aprile 2011
  • Marzo 2011
  • Febbraio 2011
  • Gennaio 2011
  • Dicembre 2010
  • Novembre 2010
  • Ottobre 2010
  • Settembre 2010
  • Luglio 2010
  • Giugno 2010
  • Maggio 2010
  • Aprile 2010
  • Marzo 2010
  • Febbraio 2010
  • Gennaio 2010
  • Dicembre 2009
  • Novembre 2009
  • Ottobre 2009
  • Luglio 2009
  • Giugno 2009
  • Maggio 2009
  • Aprile 2009
  • Marzo 2009
  • Febbraio 2009

I tag più utilizzati dall'esperto

  • analisi infinitesimale
  • derivate
  • limiti
  • goniometria
  • studio di funzione
  • geometria solida
  • trigonometria
  • circonferenza
  • equazioni parametriche
  • parabola

Aggiornamenti

  • RSS L'esperto risponde
IdeeLIM - Idee per insegnare con la Lavagna Interattiva Multimediale
Spazio CLIL - Content and Language Integrated Learning
Home Scuola Aula Scienze L’esperto risponde - Matematica

Tutti gli articoli in “circonferenza”

Circonferenza e iperbole

Ricevo da Elisa il seguente problema:
In un piano riferito ad un sistema di assi cartesiani è assegnato il punto \(A(a,-a)\). Si scriva l’equazione della circonferenza \(\gamma\) di centro \(A\) che stacca sull’asse \(x\) un segmento di lunghezza \(2\sqrt{2}\). Si intersechi \(\gamma\) con l’iperbole \(\sigma\) di equazione \(xy=1\) e, osservando che l’equazione risolvente del sistema delle equazioni delle due curve è il quadrato di un trinomio, si deduca che al variare di \(a\) le curve \(\sigma\) e \(\gamma\) sono bitangenti tra loro in due punti \(B\) e \(C\). Si individuino le circonferenze \(\gamma_1\) e \(\gamma_2\) che si ottengono per quei valori di \(a\) per cui il segmento \(BC\) dista dal centro della circonferenza di cui è corda i \(3/10\) del segmento stesso. Trovare inoltre l’area della regione finita di piano delimitata dalle rispettive corde \(BC\) di \(\gamma_1\) e \(\gamma_2\) e dalla curva \(\sigma\). Leggi tutto »

Disciplina: Matematica Analisi  del 18 Giugno 2013

Un problema di massimo trigonometrico

Ricevo da Nicolò il seguente problema:
Dato un settore circolare \(AOB\) di raggio \(r\) con angolo al vertice \(A\hat{O}B=\pi /4\), determinare sull’arco \(AB\) un punto \(M\) tale che dette \(P\) e \(Q\) le proiezioni di \(M\) su \(OB\) e \(OA\) risulti massimo il perimetro del triangolo \(PMQ\). Verificare poi che il triangolo \(PMQ\) di perimetro massimo è anche quello di area massima. Leggi tutto »

Disciplina: Matematica Analisi  del 05 Maggio 2013

Parabole e integrali

Ricevo da Roberto il seguente problema:
Determina il luogo dei centri delle circonferenze tangenti alla retta di equazione \(y=\frac{3}{2}\), passanti per il punto \(A(0;4)\). Classifica tale luogo geometrico e calcola l’area della regione finita di piano compresa tra esso, l’asse \(x\) e le rette di equazione \(x=1\) e \(x=3\). Leggi tutto »

Disciplina: Matematica Analisi  del 28 Aprile 2013

Un’omotetia nel piano

Ricevo da Nadia il seguente quesito:
La circonferenza di centro \(O\) è raggio \(1\) viene trasformata in una circonferenza che ha centro \(C( 4,3)\) e raggio \(3\). Trovare l’equazione dell’omotetia che trasforma la prima circonferenza nella seconda. Trovare l’equazione delle due circonferenze e verificare che l’omotetia trasforma la prima nella seconda. Leggi tutto »

Disciplina: Matematica Geometria analitica  del 25 Aprile 2013
Pagine:   di 24 Pagina Precedente
© 2008 - 2022 Zanichelli Editore SpA - P. I. 03978000374 - C. F. e N. I. Registro delle Imprese 08536570156 - R.E.A. n.329604
Progetto e sviluppo web duDAT Srl