MyZanichelli - la tua chiave digitale. Registrati per accedere alle risorse online di Zanichelli Editore
 
Entra
Stai consultando l'archivio di Scienze. Visita la nuova Aula di Scienze!
Zanichelli Editore
Aula di Scienze
  • Home Page
  • Menù
  • Novità
Zanichelli - Aula di scienze
  • Home
  • Per saperne di più
  • News
  • I Blog di Aula di Scienze
  • Idee per insegnare
  • L'esperto risponde
    • L'esperto di matematica
    • L'esperto di fisica
    • L'esperto di chimica
  • La Redazione

Archivio per data

  • Giugno 2013
  • Maggio 2013
  • Aprile 2013
  • Marzo 2013
  • Febbraio 2013
  • Gennaio 2013
  • Dicembre 2012
  • Novembre 2012
  • Ottobre 2012
  • Settembre 2012
  • Giugno 2012
  • Maggio 2012
  • Aprile 2012
  • Marzo 2012
  • Febbraio 2012
  • Gennaio 2012
  • Dicembre 2011
  • Novembre 2011
  • Ottobre 2011
  • Settembre 2011
  • Giugno 2011
  • Maggio 2011
  • Aprile 2011
  • Marzo 2011
  • Febbraio 2011
  • Gennaio 2011
  • Dicembre 2010
  • Novembre 2010
  • Ottobre 2010
  • Settembre 2010
  • Luglio 2010
  • Giugno 2010
  • Maggio 2010
  • Aprile 2010
  • Marzo 2010
  • Febbraio 2010
  • Gennaio 2010
  • Dicembre 2009
  • Novembre 2009
  • Ottobre 2009
  • Luglio 2009
  • Giugno 2009
  • Maggio 2009
  • Aprile 2009
  • Marzo 2009
  • Febbraio 2009

I tag più utilizzati dall'esperto

  • analisi infinitesimale
  • derivate
  • limiti
  • goniometria
  • studio di funzione
  • geometria solida
  • trigonometria
  • circonferenza
  • equazioni parametriche
  • parabola

Aggiornamenti

  • RSS L'esperto risponde
IdeeLIM - Idee per insegnare con la Lavagna Interattiva Multimediale
Spazio CLIL - Content and Language Integrated Learning
Home Scuola Aula Scienze L’esperto risponde - Matematica

Tutti gli articoli in “parabola”

Parabole, triangoli e integrali

Ricevo da Elisa il seguente problema:
Date le parabole \(\gamma\) e \(\gamma^\prime\) \(y=-x^2+2x+3\) e \(y=-x^2-4x+3\) passanti entrambe per \(A(0,3)\) e tangenti alla retta \(r\) di equazione \(4x+4y-21=0\), detti \(M\) ed \(N\) rispettivamente i punti di tangenza con \(r\), essendo \(M\) appartenente al primo quadrante, determinare la retta parallela a \(r\) che interseca gli archi \(AM\) e \(AN\) di \(\gamma\) e \(\gamma^\prime\) nei punti \(R\) e \(T\) in modo che sia massima l’area del triangolo \(MTR\). Calcolare l’area del triangolo mistilineo \(AMN\). Leggi tutto »

Disciplina: Matematica Analisi  del 29 Aprile 2013

Parabole e integrali

Ricevo da Roberto il seguente problema:
Determina il luogo dei centri delle circonferenze tangenti alla retta di equazione \(y=\frac{3}{2}\), passanti per il punto \(A(0;4)\). Classifica tale luogo geometrico e calcola l’area della regione finita di piano compresa tra esso, l’asse \(x\) e le rette di equazione \(x=1\) e \(x=3\). Leggi tutto »

Disciplina: Matematica Analisi  del 28 Aprile 2013

Un integrale definito

Ricevo da Maria Antonietta la seguente domanda:
Calcolare la misura dell’area della parte di piano \(A\) così definita:
\[A=\left\{ \left( x,y \right)|{{x}^{2}}-4x+3<0\wedge 0Leggi tutto »

Disciplina: Matematica Analisi  del 25 Aprile 2013

Un solido di rotazione

Ricevo da Elisa il seguente quesito:
Tra le parabole che hanno asse verticale e vertice \(V(0,1)\) determinare quella che ha tangenti nei punti \(A\) e \(B\) di ascissa \(1\) e \(-1\) tra loro perpendicolari. Tra le parabole determinate indicare con \(p\) quella concava verso l’alto, scrivere le equazioni delle tangenti a \(p\) in \(A\) e \(B\), determinare il loro punto di intersezione \(C\) e calcolare il volume del solido generato da una rotazione di \(180^\circ\) attorno all’asse di \(p\) del triangolo mistilineo \(ABC\). Leggi tutto »

Disciplina: Matematica Analisi  del 24 Aprile 2013
Pagina Successiva Pagine:   di 20 Pagina Precedente
© 2008 - 2022 Zanichelli Editore SpA - P. I. 03978000374 - C. F. e N. I. Registro delle Imprese 08536570156 - R.E.A. n.329604
Progetto e sviluppo web duDAT Srl